Constant mean curvature surfaces with three ends
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We announce the classification of complete almost embedded
surfaces of constant mean curvature, with three ends and genus
zero. They are classified by triples of points on the sphere whose
distances are the asymptotic necksizes of the three ends.

S urfaces that minimize area under a volume constraint have
constant mean curvature (CMC); this condition can be
expressed as a nonlinear partial differential equation. We are
interested in complete CMC surfaces properly embedded in R,
we rescale them to have mean curvature one. For technical
reasons, we consider a slight generalization of embeddedness
[introduced by Alexandrov (1)]: An immersed surface is almost
embedded if it bounds a properly immersed three-manifold.

Alexandrov (1, 2) showed that the round sphere is the only
compact almost embedded CMC surface. The next case to
consider is that of finite-topology surfaces, homeomorphic to a
compact surface with a finite number of points removed. A
neighborhood of any of these punctures is called an end of the
surface. The unduloids, CMC surfaces of revolution described by
Delaunay (3), are genus-zero examples with two ends. Each is a
solution of an ordinary differential equation; the entire family is
parametrized by the unduloid necksize, which ranges from zero
(at the singular chain of spheres) to = (at the cylinder).

Over the past decade there has been increasing understanding
of finite-topology almost embedded CMC surfaces. Each end of
such a surface is asymptotic to an unduloid (4). Meeks showed
(5) there are no examples with a single end. The unduloids
themselves are the only examples with two ends (4). Kapouleas
(6) has constructed examples (near the limit of zero necksize)
with any genus and any number of ends greater than two.

In this note we announce the classification of all almost
embedded CMC surfaces with three ends and genus zero; we call
these triunduloids (see Fig. 1). In light of the trousers decom-
position for surfaces, triunduloids can be seen as the building
blocks for more complicated almost embedded CMC surfaces
(7). Our main result determines explicitly the moduli space of
triunduloids with labeled ends, up to Euclidean motions. Be-
cause triunduloids are transcendental objects, and are not de-
scribed by any ordinary differential equation, it is remarkable to
have such a complete and explicit determination for their moduli
space.

THEOREM. Triunduloids are classified by triples of distinct
labeled points in the two-sphere (up to rotations); the spherical
distances of points in the triple are the necksizes of the unduloids
asymptotic to the three ends. The moduli space of triunduloids is
therefore homeomorphic to an open three-ball.

The proof of the theorem has three parts. First we define the
classifying map from triunduloids to spherical triples, and ob-
serve that it is proper; then we prove it is injective; and finally
we show it is surjective.

To define the classifying map, we use the fact that any
triunduloid has a reflection symmetry that decomposes the
surface into mirror-image halves (8). Each half is simply con-
nected, so Lawson’s construction (9) gives a conjugate cousin
minimal surface in the three-sphere. Using observations of
Karcher (10), we find that its boundary projects under the Hopf

Fig. 1. A triunduloid is an embedded surface of constant mean curvature
with three ends, each asymptotic to a Delaunay unduloid.

map to the desired spherical triple. The composition of these
steps defines our classifying map. It follows from curvature
estimates (11) that the map is proper.

The injectivity of our classifying map is really a uniqueness
result. We use the Hopf circle bundle to construct a trivial circle
bundle over the disk representing the Lawson conjugate. Its total
space is locally isometric to the three-sphere, and so the circle
action along the fibers is by isometries. The classifying triple
determines the bundle up to isometries. Moreover, any conju-
gate surface with the same triple defines a minimal section of the
bundle. Thus, we are in a situation familiar from minimal graphs,
and we can apply a suitable maximum principle to deduce
uniqueness.

Finally, we need an existence result showing that our classi-
fying map is surjective. We depend on the fact (12) that the
moduli space of CMC surfaces of genus g with k ends is locally
a real analytic variety of (formal) dimension 3k — 6. In partic-
ular, near a nondegenerate triunduloid, our moduli space has
dimension three. We get such a nondegenerate triunduloid by
using a nondegenerate minimal trinoid (13) in a recent con-
struction by Mazzeo and Pacard.

To prove surjectivity of our classifying map, we use the fact
(14-16) that a three-dimensional analytic variety can be trian-
gulated, with each two-simplex meeting an even number of
three-simplices. We then show that a proper, injective map from
such a three-complex to a connected three-manifold (here, the
three-ball) must be surjective as well. We use the standard
lemma (17) that a proper, injective map from any space to a
compactly generated space is a homeomorphism onto its image.
Once surjectivity is known, this lemma is used once more to show
that our classifying map is in fact a homeomorphism.

Note that our geometric picture of the triunduloid moduli
space naturally explains necksize bounds for triunduloids. For
instance, the symmetric triunduloids constructed previously (18)
have three congruent ends, with necksize at most 27/3. This
bound in the symmetric case can now be seen as the maximum

Abbreviation: CMC, constant mean curvature.
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side length for a spherical equilateral triangle. More generally,
we have the following.

COROLLARY. The triple 0 < x,y, z =< 1 can be the necksizes of a
triunduloid if and only if it satisfies the spherical triangle inequalities:
x+y+tz=2m x=y+z, y=z+x, z=x+y
In particular, at most one end of a triunduloid can be asymptotic

to a cylinder.
Similar methods apply to genus-zero surfaces with k > 3 ends,
when those ends still have asymptotic axes in a common plane.
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The moduli space of such coplanar k-unduloids can be under-
stood as a covering of the space of spherical k-gons. More
general surfaces, without coplanar ends, will be more difficult to
classify.
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